
© 2014-2018 Dassault Systèmes 1

Dag Brück, 11 October 2018

Introduction ... 1

Dymola Overview .. 1

Model Based System Engineering 3

Modelica .. 6

Benefits of Equation-Based Modeling 6

Templates and Reuse .. 8

Model Design Tools ... 9

Code and Model Export 10

Interfacing Other Software 11

Academic Packages.. 11

User Roles .. 11

Industry Solutions: Model Libraries..................... 13

Functional Mockup Interface 16

References ... 17

This document is an attempt to summarize

benefits and technical overview information for

Dymola, Modelica and FMI. The parts can be read

independently, based on interest and need.

Additional resources are available online at

www.dymola.com. Feedback is always welcome.

Products are becoming more complex and the

demands for better performance and reduced

cost are ever increasing. Much of the complexity

arises from a higher degree of interaction

between sub-systems. Combined with the

demand to reduce time-to-market, the need to

increase development productivity is higher than

ever.

With Model Based System Engineering, system

architectures can be quickly assessed based on

behavior and performance simulation. Informed

decisions are made earlier in the development

process, long before detailed design or physical

prototype manufacturing.

This document describes the benefits of Dymola

and the underlying technologies, such as,

Modelica and FMI.

After an overview of all Dymola features, we take

a step back and try to place behavior modeling

and Dymola in the general framework of Model

Based System Engineering. Then follows a few

chapters focused on the Modelica language and

the benefits that follow, and which are effectively

capitalized in Dymola. We conclude that part with

a look at certain tools and export capabilities in

Dymola.

Then follows a chapter we try to look at the

benefits from a user role perspective, rather than

a tool/technology perspective. Model libraries are

key here because they encapsulate application

domain knowledge. Finally, we touch upon the

Functional Mockup Interface that provides a

standardized interface for code modules.

Dymola is a Modelica compliant solution that

efficiently models and simulates multi-physic

dynamic systems. Dymola rapidly solves complex

multi-disciplinary systems modeling problems that

can contain a combination of mechanical,

electrical, electronic, hydraulic, thermal, control,

electric power or process-oriented characteristics

and components.

http://www.dymola.com/

© 2014-2018 Dassault Systèmes 2

Dymola Benefits

 Powerful multi-disciplinary systems
engineering through compatible model
libraries for a large number of
engineering domains.

 High-fidelity modeling of complex
integrated systems.

 Intuitive modeling.

 Open model libraries enabling users to
easily build their own.

The unique cross-discipline support provided by

Dymola enables users to define and simulate

models that comprise physical components from

many engineering domains.

The fundamental system components are

described by ordinary differential and algebraic

equations resulting in reusable models of

complete systems that are more easily

maintained than traditional block diagram based

modeling approaches.

Dymola’s graphical editor and the multi-discipline

engineering libraries make modeling fast and

easy. The libraries include elements correspond-

ing to physical devices which are simply dragged-

and-dropped to build the system model.

Interactions between the components are conve-

niently described by graphical connections that

model the physical coupling of the components.

This means that models are intuitively organized

the same way as the physical system is composed.

Dymola has unique and outstanding performance

for solving systems of differential algebraic

equations.

The key to this high performance and robustness

is symbolic manipulation that optimizes and

solves the systems of equations that define the

system.

[Mechanism with three planar kinematic loops

and one degree of freedom.]

For example, Dymola will optimize the 3D multi-

body mechanism above utilizing constraints given

by the joints and evaluated parameters. The non-

linear equation systems for the coupled planar

loops will be solved analytically during the

translation. The generated simulation code has

only two continuous time states.

These techniques together with special numerical

solvers enable real-time Hardware-In-the- Loop

simulation of automotive drivelines and full

vehicle dynamics models with flexible elements.

For certain kinds of models large performance

gains can be achieved by using multiple processor

cores. Dymola will automatically analyze the

equations and partition the code.

[Speed improvement of using four processor

cores for simulating the evaporator of an air

conditioning system, with increasing level of

model detail.]

0 10 20 30

2

3

4

5

6

Simulation time [s]

D
is

cr
et

iz
at

io
n

© 2014-2018 Dassault Systèmes 3

The Modelica based environment is completely

open in contrast to many modeling tools that

have a fixed set of component models and

proprietary methods for introducing new

components. Users of Dymola can easily create

models that match their own and unique needs.

This can be done either from scratch or by using

existing components as templates.

FMI is an open, general and vendor independent

interface standard that provides advanced

runtime tool interoperability that enables

accurate system model compositions to be

created. Dymola fully supports FMI, enabling

plant models and ECU interactions to be validated

using multi-level simulation approaches.

Dymola is based on Modelica which gives unique

access to libraries developed by leading domain

experts. All libraries are compatible with each

other and include components for mechanical,

electrical, control, thermal, pneumatic, hydraulic,

power train, thermodynamics, vehicle dynamics,

engine dynamics, air-conditioning, fuel cells, heat

exchangers, etc.

Dymola Key Features

 Compliant with the Modelica® standard
language, a powerful, object-oriented
and formally defined modeling
language.

 Comprehensive set of model libraries.

 Hardware-in-the-Loop (HIL) simulation
in real-time on dSPACE, xPC and FMI
platforms.

 Interface to FMI and Simulink®.

 Calibration and design optimization.

A number of Dymola applications have been

described in journals and at conferences. A small

selection of papers recommended for further

reading can be given here.

BMW has used Dymola for some 15 years,

primarily for modeling conventional and hybrid

drivelines [1]. Recently the Functional Mockup

Interface has achieved great success as a

simulation framework [2].

ZF Friedrichshafen uses Dymola and Modelica for

modeling of transmissions, using the same models

for MIL, SIL and HIL on a several different

platforms [3].

SAAB Aeronautics uses Dymola for modeling of

several vehicle systems, the most complex being

the Environmental Control System and Fuel

System of the Gripen multi-role combat aircraft

[4] [5]. An interesting application is the use of CAD

geometry data in system simulation [6].

Ford Motor Company uses Modelica for several

applications. The core effort has been focused on

conventional and HEV drivelines [7] [8]. The

challenges of making a full vehicle model run in

real time are described in [9].

Toyota Motor Corporation has used Dymola for

chassis, drivetrain (including the hybrid car Prius)

and engine modeling [10]. More recently, a

holistic vehicle model for small electric vehicles

including mechanics, electrics, electronics, vehicle

dynamics and control was made and utilized for

the investigation of overall vehicle specifications

and system structures [11].

Fluid and thermal simulation of complex systems

is becoming more and more common in the

automotive [12] and process industries [13].

A model based approach to product development

is becoming more and more important, and

Dymola plays an important role from conceptual

design all the way to verification of the final

product.

© 2014-2018 Dassault Systèmes 4

Every faith tends to place its deity at the center.

The figure above shows how system simulation

can interact with and provide services to many

other domains.

 FEA: System-level simulation; boundary

conditions.

 CAD: Dynamic simulation for mechanics and

piping; import material properties.

 PLM: Requirements management for system

models; collaboration tools. Simulation

answering to quantitative requirements.

 Virtual Reality: Realistic behavior driving the

virtual world.

 Manufacturing: Control and behavior for

simulation.

Systems can be described at many levels of detail

and complexity, starting with requirements

specification going down to detailed

mathematical models based on Finite Element

Analysis (FEA) or Computational Fluid Dynamics

(CFD). Behavior modeling falls in-between,

providing fast modeling and simulation at an

intermediate level of detail.

The traditional ‘V’ model can be used to visualize

the various steps of the development process

where system modeling and simulation can be

deployed.

On the left hand, design, side of the V we descend

from requirements capturing at the system and

sub-system levels, then to architecture and sub-

system design, and all the way down detailed

component design.

On the right hand side, the models used on the

design side are re-used during verification. Data

obtained here is also used to calibrate the original

models, leading to models that more accurately

can predict the real-world behavior. Eventually,

physical tests are used to verify that requirements

have been satisfied.

Requirements

Functional description

System behavior (differential equations, logic)

Partial differential equations

Finite Element Analysis

Computational Fluid Dynamics

Less

More

Detailed design

Component level

Subsystem level

System level

Conceptual level

Module testing

Component testing

Integration/system testing

System level validation

Commissioning

Variant

evaluation

Early

phase

sizing

Production

Detailed plant

models for control

development

Online

simulators

Virtual tests of

costly/dangerous

procedures

HIL/Rapid

prototyping

Non-Real

Time / High

Level

Simulations

– Open and

Closed Loop

Virtual

prototyping

© 2014-2018 Dassault Systèmes 5

The key benefits of a model based approach come

from replacing physical prototypes with virtual

prototypes, and the ability to evaluate design

decisions earlier in the process. The overall goal is

in fact to increase the number of prototypes, but

virtually of course.

Modelica supports template based modeling

which makes it easy to experiment with alterna-

tive system architectures within a common test

framework.

Very simple models can be used for early

assessment, for example to estimate range and

weight of Hybrid Electric Vehicle (HEV) designs in

a wide range of scenarios. The evaluation of four

different hybrid vehicles using a common model

framework is described in [14].

Certain system requirements are quantitative

rather than qualitative. The most obvious

example is fuel consumption for a given driving

cycle, which will require a dynamic behavior

model to estimate.

This is an example where an initial system

requirement can be analyzed using simulation,

leading to more detailed requirements for sub-

system and component design.

More detailed behavior models are used to guide

the design of sub-systems and individual

components. An important aspect is that high-

level models of the complete system can be

augmented with detailed models of a smaller

part.

Another possibility is to use system level

simulation to calculate boundary conditions for

Finite Element Analysis.

Relatively simple kinematic models of a wheel

suspension can be used to calculate forces (red

arrows) arising from a vehicle maneuver, which

are then used for FEA of suspension parts.

Moving up the right side of the development V,

models used at the design stage are verified

based on detailed simulation during component

design, or by measurements on hardware.

This process is used to calibrate system level

models so that they can more accurately predict

system behavior. This knowledge is used if the

design needs to be changed, or when system

models are reused in a later project.

The final testing of a system, before actual test

driving of e.g. a car, is typically performed in a

Hardware-in-the-Loop (HIL) test bench. Here one

part of the system is implemented with the actual

hardware, such as, an Electronic Control Unit

(ECU). The rest of the system is implemented

virtually, where a mathematical model emulates

the rest of the car comprising of engine,

transmission and vehicle.

HIL simulation imposes particular requirements,

specifically that the simulation must run in real

time to match the ECU. A typical cycle time for HIL

applications is 1 millisecond. Dymola implements

special optimization techniques to permit

sophisticated drivetrain models to simulate

reliably in a HIL environment.

Requirement
System
Design

System
Simulation

Requirement
Component

Design

© 2014-2018 Dassault Systèmes 6

Founded on the accumulated experience of

several groups in industry and academia,

Modelica is a modern and expressive language for

describing dynamic systems. Particular attention

has been placed on promoting true reuse of

modeling knowledge regardless of application

domain [15].

The Modelica language and its standard library

(MSL) are managed by the Modelica Association

through a number of design meetings. Modelica is

vendor neutral and supported by multiple tools,

being developed by both users and vendors.

Because Modelica is vendor and domain neutral,

users are no longer locked into proprietary

solutions. The open development process allows

early feedback and yields well-defined semantics

of the language.

Modelica Highlights

 Equation-based

 Acausal connections

 Declarative

 Object-oriented

 Template frameworks

 Non-proprietary

Modelica is an equation-based modeling

language. The dynamic behavior of systems is

described by differential and algebraic equations.

This allows tools to generate highly efficient

simulation code, suitable for real-time Hardware-

In-the-Loop applications.

At the lowest level of abstraction, relationships

between variables are described by mathematical

equations. At higher levels, components are

composed graphically in Dymola thru drag-and-

drop, and the externally visible variables (called

connectors in Modelica) are connected by

drawing a line between two connectors.

A connection defines another set of equations,

one for each variable in the connector. Across

variables, such as voltage and force are set equal.

Thru variables, such as current and torque, sum to

zero.

From textbooks we learn that an electrical resistor

is defined by Ohm’s law:

v = R*i

We use this equation in the Modelica definition of

a resistor too, here referring to the voltage drop

between the positive and negative pins.

From this equation, a Modelica translator can

either calculate the voltage drop (if the current is

known), or by automatically re-writing the

equation, calculate the current if the difference in

voltage is known. Which is needed for each use of

a resistor depends on the overall structure of the

circuit. Modelica is said to be acausal, because the

signal flow in and out of components need not be

specified.

In tools which do not support equation-based

modeling, the user must define two resistor

models, one to calculate the voltage drop and one

to calculate the current; for a component such as

a planetary gearbox, many more combinations of

inputs and outputs must be defined. Furthermore,

the user must understand the detailed signal flow

of the entire circuit in order to pick the right

model for a component.

© 2014-2018 Dassault Systèmes 7

The power of equation-based modeling compared

to signal-based modeling can be shown with a

simple example.

This Modelica model shows a simple servo,

comprising a controller, an electrical motor (on

blue background) and a load. The model has two

inertias, one representing the rotor of the motor,

and connected through an ideal gearbox, the

load.

Such a model must of course be transformed into

code suitable for simulation and execution.

Dymola will do this automatically and efficiently,

but using a traditional block-oriented tool the

user must make this transformation by hand,

which is both tedious and increases the risk of

making mistakes.

Let us now study the vibrational effects of the

shaft. We do this by inserting a spring-damper

component in Dymola’s diagram, which is a

simple operation.

The corresponding operation in a block-oriented

tool requires a major change of the model.

The key question is really if you want engineers to

do this by hand, or if you want such work to be

done automatically by a tool.

In an inverse model the simulation outputs are

specified rather than the usual inputs, which are

instead calculated by the model. The causality of

the model is reversed, which requires an acausal

model formulation.

A few examples of inverse models are a driver

model that gives the perfect throttle setting to

follow a given speed profile; calculation of

actuator force needed for a mechanical assembly;

and the design of model-based controllers.

[Model that calculates required actuator force to

retract landing gear in specified time.]

In the example above we have designed a landing

gear assembly. Previously we could specify a force

that resulted in a motion of the mechanism.

However, to dimension the system we want to

prescribe a certain motion and calculate what

forces are required to achieve this. The means we

must invert the system.

n*km

emf2

n*km

emf1e

1/(Jl+Jm*n^2)

T2wdot
Sum

Step

Ra

Resistor

PID

PI

s

1

Inertia

1/La

Inductor

s

1

I 1. Specify constraint

2. Calculate force

© 2014-2018 Dassault Systèmes 8

With Dymola and an acausal Modelica model, we

will instead specify the desired movement of the

retraction connecting to the speed sensor.

Dymola will then calculate the force needed to

achieve this behavior. It should be noted that the

landing gear model is unchanged.

Modelica has been designed to provide very

strong support for expressing common properties

of models and interfaces that can be shared

throughout an entire engineering domain. The

Modelica Standard Library defines many such

interfaces that are shared by commercial and

third party libraries.

Inheritance is a composition mechanism inspired

by object-oriented programming languages. It

gives an efficient and safe construct to share

common properties.

[Reuse of models: Pin-TwoPin-Capacitor.]

In this example, we start by defining an electrical

pin with two variables: voltage and current. This

definition of an electrical pin can be reused by any

electrical component, ensuring connection

compatibility.

The pin is then used to define a TwoPin, the

common basis for all electrical components with

two pins. Furthermore, we can define the basic

property that current flowing into one pin will

flow out of the other pin, as well as a variable for

the voltage drop.

Based on this TwoPin, the definition of electrical

components such as a capacitor can be reduced

to the characteristic equation, reusing all interface

specifications.

Modelica supports the development of model

templates, where certain parts of a model can be

replaced by compatible components.

The author of the template must declare what

parts can be changed. Typically the author also

specifies a model which defines the interfacing

requirements of any substituted component. The

user of a template can then redeclare

components in the template, thereby providing

the behavior model for a specific part.

Model templates provide a clean interface

between template author and template user.

Compared to a copy-and-paste approach,

Modelica templates ensure compatibility and

make explicit which components are modified.

The graphical user interface in Dymola facilitates

the use of templates. Dymola can list exactly

those models which are interface compatible,

making selection easy.

[Changing the front suspension implementation

from a list of matching models.]

The vehicle architecture is a powerful example of

a Modelica template, which gives a framework for

many different cars.

end Capacitor;

partial model TwoPin
p, n; Voltage v;

equation
v = p.v - n.v ;
p.i + n.i = 0;

end TwoPin ;

connector Pin
Voltage v;
flow Current i ; // Sums to zero

end Pin;

model Capacitor
extends TwoPin ;
parameter Capacitance C;

equation
i = C*der(v);

Pin

© 2014-2018 Dassault Systèmes 9

[Standard vehicle architecture from the

VehicleInterfaces library.]

The template defines an architecture comprised

of engine with front-side accessories,

transmission, driveline, chassis and breaks, as well

as a driver model. Each sub-system can be

replaced by more detailed components that

model specific technical solutions, down to

models parameterized to represent manufactured

parts from suppliers.

The framework ensures component compatibility,

convenient default behavior, and a common

signal naming convention that facilitates

experimentation and reuse across department

boundaries.

Dymola Model Reuse

Primitive component models are reused to
75-90 %. Reuse at the system model level
(250-300 state variables) is approximately 40-
60 %. Reusing model interfaces with 300-400
in/out signals saves a lot of work.

Ingela Lind, PhD
Technical Fellow, SAAB Aeronautics

Model experimentation involves running simula-

tions for various combinations of parameters to

determine the modeled system’s properties.

A convenient user interface facilitates such

experimentation. Sweeps over one or two

parameters are visualized by plotting variables

used as key performance indicators, or the

surface formed by varying two parameters.

[Sweeping of two parameters visualized by a

surface plot. Experiment setup on the right side.]

A Modelica model describing a physical system

typically includes many parameters which have to

be set. Some parameter values are difficult to

determine from the design specification or hard

to measure, for example the inertia of a part,

friction and loss parameters.

[Comparing measured and simulated acceleration

after tuning model parameters.]

Model calibration (parameter estimation) is the

process where measured data from a real device

is used to tune parameters such that the

simulation results are in good agreement with the

measured data. Dymola varies the tuning

parameters and simulates to search for

satisfactory solutions which minimize the

difference between the simulation results and the

measurements.

engine transmission

chassis

driveline brakes
accessories

driverEnvironment

road atmosphere
world

x

y

© 2014-2018 Dassault Systèmes 10

The Design Optimization option is used to tune

parameters of a device or its controller to improve

system dynamics for multiple criteria and multiple

cases.

A Modelica model contains many parameters that

can be tuned for better performance, for

example, the spring constants of a car, the gear

ratio of a gearbox, or parameters of a controller.

Design optimization is an approach to tune

parameters such that the system behavior is

improved. The tuning parameters are calculated

to minimize mathematical criteria which express

improvement. Criteria values are usually derived

from simulation results, e.g., the overshoot or rise

time of a response, but they can also be derived

by frequency responses or eigenvalue analysis.

Model Management includes support for

encryption of models, version control from

Dymola (CVS and Subversion) and utilities for

checking, testing and comparing models.

 Regression testing (checking simulation

results against know good results).

 Class and condition coverage.

 Variable unit and style checking.

Dymola has support for exporting models and

model source code. Three export alternatives with

different functionality are provided.

The real-time simulation option enables the

model to be used in environments not supporting

the Microsoft C compilers. The option is

specifically designed for real-time platforms, such

as the dSPACE, xPC and other platforms that are

supported by Dymola for Hardware-In-the-Loop

(HIL) simulation.

Real-time simulation allows export of models that

use inline integration, a methodology that

embeds fixed-step numeric integration in the

model code to improve simulation performance.

The binary model export option allows the model

to be exported to other computers without

requiring a Dymola license at the target system.

The simulation functionality of the exported

model is the same as on a computer having a

Dymola license.

Source code generation exports code that can be

used on any platform without the need of a

Dymola license at the target system. It allows

export of readable and well-documented code

facilitating inspection, debugging, profiling, etc.

This makes this export option suitable for

advanced model-based applications, such as rapid

prototyping.

The binary model export and source code

generation options both allow export of symbol

table information, e.g., model structure, variable

names, types, and units as an XML file.

Models may contain sensitive information, either

design parameters or in the model formulation.

Hence there may be a need for the model author

to protect the contents from copying or viewing.

Dymola supports encryption of packages of

models, and has settings to hide or show certain

aspects of the model. For example, the

documentation of a model can be visible, but its

implementation hidden. However, the internal

structure of the model can be used by the tool,

but the generated simulation code will contain

obfuscated variable names to reduce the risk of

reverse engineering from the C code.

© 2014-2018 Dassault Systèmes 11

For complete sub-systems, the executable model

can be exported as binary code according to the

FMI standard.

Dymola offers excellent capabilities to interface to

other software tools and simulation

environments.

FMI allows any modeling tool to generate C code

or binaries representing a dynamic system model

which may then be seamlessly integrated in

another modeling and simulation environment.

Dymola supports import and export of functional

mockup units in all formats and full compliance

with the FMI specification.

Dassault Systèmes provides tools with full support

for FMU export and import with Simulink.

In addition to FMI, Dymola also supports export of

S-function blocks for direct integration into the

Simulink environment. The tool chain is fully

compatible with HILS platforms such as dSPACE.

Dymola can easily interface to common scripting

environments such as Python and Java, permitting

flexible scripting of common tasks. Parameters

can be set and simulation results read with

provided utility libraries. Data can be exported in

various formats, including CSV for Excel and HDF5.

Modelica-based Dymola offers a common

platform for teaching across many scientific

domains. Focus on equations from physics,

chemistry or mathematics rather than

implementation of algorithms. Apply industrial

strength model libraries to teach applications that

are more interesting. There are a number of

favorably priced packages for academic use, with

either basic functionality or including all options.

The main academic packages are called Learn and

Innovate. The Academic Learn package (DYL-EDU)

contains the standard Dymola configuration, a

few libraries, FMI export capability plus the

options to use models in Simulink and on real-

time platforms.

The Academic Innovate package (DYI-EDU)

includes all commercial Modelica libraries in

addition to the features of Academic Learn.

There is a special offer for teaching, which com-

prises 25 shareable licenses of either Learn or

Innovate at a special rate. The motivation being

that a typical classroom has up to 25 students.

The student licenses (available as Learn and

Innovate) are intended for use on the student’s

own computer for home usage, whereas the usual

academic licenses are installed on the university’s

computers. The student licenses are have reduced

capacity (only smaller models can be translated)

and are valid for one year.

The development engineer works on new designs

as well as improving existing ones. He wants to

focus on modeling the system behavior, both of

the physical sub-system that will be manufactured

and of the associated control system. To do that

he wants an environment where he can focus on

the system design and the model behavior, and

care less about programming.

Dymola provides an effective, Modelica based,

environment for model development, simulation

© 2014-2018 Dassault Systèmes 12

and experimentation. Most component models

are readily available in libraries, composed with a

simple drag-and-drop operation and then para-

meterized. Specialized models can be developed

from scratch using the open Modelica language.

Using an equation-based Modelica solution means

that the development engineer does not have to

manually transformation his models to simulation

code, this is handled automatically by Dymola.

This saves time, because the translation is fast

and automatic, and it increases reliability because

human error is eliminated in the process.

Development becomes faster and more robust,

giving him time to explore more alternatives and

changing his design without having to create

simulations from the beginning again. When

hardware testing begins, models can be run on

many common Hardware-in-the-Loop platforms.

He will have more fun and be more productive.

Because he can capture more complicated

behavior early in the modeling work, the deigned

product will be better suited for the user’s needs.

The project manager has a group of development

engineers designing a range of advanced

products. One of the key challenges is to make

developments by one engineer available to the

entire group, and eventually to other

development groups responsible for system

integration.

By developing libraries of component models in

the team, commonality of design and alternative

solutions can be expressed. This leads to higher

productivity due to reuse of models from earlier

development work. Developing common test

models gives a framework that makes exploration

of alternative designs easy.

Models are used in the entire development cycle,

from exploring system architectures, through

detailed design, and finally to verification and HIL

testing.

The project team must also support other

departments developing connected sub-systems

and a group responsible for system integration.

They do this by exporting pre-packaged

simulation code according to Functional Mockup

Interface (FMI) specification, which protects the

model integrity but makes integration with other

simulation tools easy.

The manager of a Hardware-in-the-Loop (HIL)

laboratory is responsible for testing real hardware

components in a virtual test environment. The

goal is “test more prototypes, not fewer” but

obviously not meaning to build more full-scale

hardware prototypes.

The HIL lab is designed to test certain hardware

components, typically controller ECUs, together

with the rest of the car emulated by software.

This approach is less expensive than building

physical prototypes, shortens the time to

complete a test, and gives reproducible test

conditions. For a powertrain ECU, the

transmission, driveline, parts of the car, and the

drive cycle are implemented in software. To

support it a dedicated real-time computer system

with data acquisition is needed. The tool used for

modeling the transmission must also be able to

generate code that runs in real time.

Dymola is the Modelica tool most commonly used

for HIL applications. While maintaining the high-

level model description inherent by Modelica,

Dymola uses specialized techniques in order to

generate C code that is well suited to running in

real time on HIL platforms. The same models can

be used for both HIL and non-real time models.

This means that models developed during the

design phase (the left hand side of the

development V) are used also for verification (the

right hand side of the V). Also measurement data

from the HIL environment can be used to further

improve the original models, using a process

called model calibration.

© 2014-2018 Dassault Systèmes 13

The IT manager working in a large corporation has

to support multiple user groups with different

needs. There are researchers, system developers,

and large sets of simulation data with associated

models. Many different tools are used.

Typically, models are developed within a

department, and then the simulation code needs

to be shared by several users in other

departments. Model integrity, and sometimes

hiding of sensitive information, is essential. This

creates the need for a common simulation and

execution environment, where simulation

modules can be used in a cross-department

framework of computers.

For these reasons, many companies have decided

to deploy the Functional Mockup Interface (FMI)

as standard for the simulation infrastructure. FMI

is well specified and vendor-neutral, allowing the

use of multiple tools for developing simulation

models and also several tools to execute the

models on various platforms.

The head of R&D has an overall strategic

responsibility for all development work. To ensure

a long-term stable environment, the goal is to

focus on open, standardized, vendor-neutral

formats supported by multiple tool vendors: the

Modelica language for cross-domain model

development, and the Functional Mockup

Interface (FMI) for simulation execution and

exchange.

To sustain a steady flow of innovation, the

collected knowhow of current and previous

systems encoded in Modelica models, which

allows global reuse of engineering knowledge.

Reusable models are used from early architecture

studies, through detailed design of a smaller

number of proposed solutions, all the way to

system verification and validation.

Using common modeling and simulation

platforms supports cross-department

collaboration, exchange of human resources and

transfer of knowhow from one generation of

engineers to the next.

As professor at an engineering school, the

difficulty is to combine the teaching of principles

with relevant examples. Without the proper tools,

examples worked out by hand tend to be

simplistic and without industrial relevance. With

the wrong tools, too much time is wasted on

transforming the problem to code rather than

engineering.

With the unified modeling approach given by

Modelica, modeling based on first principles

across multiple domains can de expressed directly

with equations, and the powerful Dymola tool

takes care of generating simulation code. Because

Modelica can be used in many domains, the cost

of teaching the tool is amortized of the several

courses.

With special academic licensing, including all

commercial model libraries, Dymola is a very

affordable modeling and simulation platform. To

facilitate teaching, license bundles for classroom

or individual student use are available.

Modelica tools are domain-agnostic, meaning that

they process equations in order to generate

efficient simulation code. Domain knowledge is

packaged in Modelica model libraries, designed to

handle a variety of applications from mechanical,

electrical, and thermo-fluid domains.

The libraries can be used with both Dymola and

3DEXPERIENCE Dymola Behavior Modeling, either

on their own or combined with other Modelica

© 2014-2018 Dassault Systèmes 14

Libraries, to model and simulate complex systems

that can span multiple engineering disciplines.

The automotive applications fall into three main

categories. The engine and drive train are

modeled using the Vehicle System Modeling and

Analysis (VeSyMA), VeSyMA Engines and VeSyMA

Powertrain libraries. The flexibility of the open

Modelica language is particularly suitable for

modeling hybrid or alternative drive trains using

the Battery, Brushless DC Drives and Electrified

Powertrains libraries. Modal bodies or flexible

shafts are available through the Flexible Bodies

library. Engine and battery cooling is supported by

the Cooling library, which can be combined with

the Thermal System Simulation and HVAC

libraries. The Human Comfort and Fluid Dynamics

libraries adds models of occupant comfort for

complete vehicle thermal modeling.

Subsystem and complete vehicle models for

handling and control experiments are provided by

the VeSyMA Suspensions library, which also

allows real-time simulation for driver-in-the-loop

applications. The hierarchically structured, open-

source, Modelica models offer unprecedented

flexibility for multiple vehicle configurations while

reusing common components.

Actuator and controller components are available

in the Fluid Power and Pneumatic Systems

libraries and the Modelica Standard Library.

A multitude of libraries offers the capacity to

model the complex thermo-fluid systems of

aircraft, ranging from fuel systems to

environmental control. A wide range of thermo-

fluid systems can be modeled with the Thermal

System Simulation library. The Human Comfort

library provides additional models of occupant

comfort for cabin thermal modeling.

The Flight Dynamics Library enables rapid analysis

of flight characteristics of a wide range of flight

vehicles. The library is ideally suited for the multi-

disciplinary development of accurate flight control

laws as well as for use in real-time flight

simulators.

Actuators for flight control and other subsystems

use the Fluid Power, Pneumatic Systems,

Brushless DC Drives and Electrified Powertrains

libraries. Flexible beams and modal bodies from

Finite Element models are managed by the

Flexible Bodies library.

The Electric Power Systems library supports

modeling of electrical aircraft systems, including

generation, conversion and control of high

frequency A/C systems.

© 2014-2018 Dassault Systèmes 15

Ever more stringent requirements on environ-

mental impact drive the trend towards more

detailed modeling of physics and control systems.

The ClaRa Plus library facilitates simulation of e.g.

advanced combined cycle power plants.

The Heat, Ventilation and Air Conditioning (HVAC)

library allows you to minimize building HVAC

operating costs by selecting the correct system

control strategy and avoid costly HVAC system

design errors early in the building design process.

The Human Comfort Library provides an

integrated approach to simulate the thermal

comfort within an occupied building or vehicle.

All kinds of industrial equipment can be modeled

using the mechanical libraries of the Modelica

Standard Library, including 3D multi-body

systems. Other options are flexible beams and

modal bodies originating from a Finite Element

model. Actuators and control systems are

modeled with the Fluid Power, Pneumatic

Systems, Battery, Brushless DC Drives and

Electrified Powertrains libraries. The thermal

properties of industrial machinery are easily

modeled with the Thermal System Simulation and

Cooling libraries.

© 2014-2018 Dassault Systèmes 16

The Functional Mockup Interface (FMI) is an

industry standard for combining simulation code

modules (FMUs) from multiple tools and vendors.

Developed under the auspices of the Modelica

Association, the specification provides a well-

defined and vendor-independent exchange

format for code (binary or source) as well as

associated data and documentation.

FMI is supported by a large number of authoring

tools, including tools which are not Modelica

based, making it the ideal foundation for a vendor

independent simulation infrastructure.

The FMI specification defines two exchange

formats. FMI for model exchange defines the

interface for simulation code modules that must

be combined with a common, central, solver. This

ensures a uniform numeric solution and

centralized strict simulation error control.

FMI for co-simulation defines the interface for

code modules with embedded numeric solvers, as

used by the generating tool. This approach gives

the opportunity to embed dedicated solvers for

the modeled application, and facilitates

compatibility with simulation in the authoring

tool.

[FMI for Model Exchange.]

[FMI for Co-Simulation.]

The recent FMI 2.0 specification standardizes

important extensions that improve simulation

speed and accuracy.

FMI 2.0 Highlights

 Classification of interface variables

 Save and restore FMI module state

 Variable dependency information

 Partial derivatives

 Precise time event handling

 Improved unit definitions

Dassault Systèmes provides tools with full support

for FMU export and import with Simulink. The

toolkit can be used for free without any license

key. Support and maintenance is offered to

Dymola customers through the regular support

channel.

General features of the FMI Kit are:

 Full FMI support for both export and import;

FMI versions 1.0 and 2.0 - Model Exchange

and Co-Simulation.

 Simulink Coder Target is used for export of

FMUs from Simulink.

 Support for global tunable parameters and

parameter references to workspace or mask

variables.

 Variable communication step size in Co-

Simulation export.

 Simulink FMU block for importing and

embedding FMUs into Simulink models.

 Import of Dymola source code FMUs and

support for several simulation targets: Rapid

Accelerator, RSIM, GRT, and dSPACE DS1005

and DS1006.

© 2014-2018 Dassault Systèmes 17

Public sources of additional information.

[1] C. Schlegel, M. Bross and P. Beater, "HIL-

Simulation of the Hydraulics and Mechanics

of an Automatic Gearbox," in Proc. 2nd

Modelica Conference, Oberpfaffenhofen,

Germany, 2002.

[2] S.-A. Schneider, J. Frimberger and M. Folie,

"Significant Reduction of Validation Efforts

for Dynamic Light Functions with FMI for

Multi-Domain Integration and Test

Platforms," in Proc. 10th Modelica

Conference, Lund, Sweden, 2014.

[3] J. Köhler, M. Kuebler and J. King,

"Transmission Modeling in Modelica: A

consistent approach for several software

development platforms," in Proc. 10th

Modelica Conference, Lund, Sweden, 2014.

[4] I. Lind and H. Andersson, "Model Based

Systems Engineering for Aircraft Systems –

How does Modelica Based Tools Fit?," in

Proc. 8th Modelica Conference, Dresden,

Germany, 2011.

[5] S. Steinkellner, H. Andersson, H. Gavel and

P. Krus, "Modeling and simulation of Saab

Gripen's vehicle systems," in Proc. AIAA

Modeling and Simulation Technologies

Conference, AIAA 2009-6134, Chicago, IL,

USA, 2009.

[6] I. Lind and A. Oprea, "Detailed geometrical

information of aircraft fuel tanks

incorporated into fuel system simulation

models," in Proc. 9th Modelica Conference,

Munich, Germany, 2012.

[7] M. Tiller, W. E. Tobler and M. Kuang,

"Evaluating Engine Contributions to HEV

Driveline Vibrations," in Proc. 2nd Modelica

Conference, Oberpfaffenhofen, Germany,

2002.

[8] J. Batteh, "Engine Modeling with Modelica,"

in Proc. Modelica Automotive Workshop,

Dearborn, MI, USA, 2002.

[9] R. Gillot, A. Picarelli, M. Dempsey and S.

Gallagher, "Model Reduction Techniques

Applied to a Physical Vehicle Model for HiL

Testing," in Proc. 12th Modelica Conference,

Prague, Czech Republic, 2017.

[10] S. Soejima, "Examples of usage and the

spread of Dymola within Toyota," in Proc.

Modelica Workshop, Lund, Sweden, 2000.

[11] Y. Hirano, S. Inoue and J. Ota, "Model-based

Development of Future Small EVs using

Modelica," in Proc. 10th Modelica

Conference, Lund, Sweden, 2014.

[12] E. Galindo, R. Soler, A. Picarelli and V. Avila,

"Engine thermal shock testing prediction

through coolant and lubricant cycling in

Dymola," in Proc. 12th Modelica Conference,

Prague, Czech Republic, 2017.

[13] T. Skoglund, "Simulation of Liquid Food

Processes in Modelica," in Proc. 3rd

Modelica Conference, Linköping, Sweden,

2003.

[14] J. Batteh and M. Tiller, "Implementation of

an Extended Vehicle Model Architecture in

Modelica for Hybrid Vehicle Modeling:

Development and Applications," in Proc. 7th

Modelica Conference, Como, Italy, 2009.

[15] H. Elmqvist, "Modelica Evolution - From My

Perspective," in Proc. 10th Modelica

Conference, Lund, Sweden, 2014.

	Introduction
	Increasing product complexity
	Fighting complexity with Dymola

	Dymola Overview
	Multi-discipline modeling and simulation
	Intuitive modeling
	Outstanding performance
	Open and flexible
	Functional Mockup Interface (FMI)
	Domain-specific libraries
	Customer testimonials

	Model Based System Engineering
	The development V
	Early architecture assessment
	Quantitative requirements
	Detailed subsystem design
	Model verification
	Hardware-in-the-loop (HIL)

	Modelica
	Standardization and vendor independence
	Equations and connections

	Benefits of Equation-Based Modeling
	Simple model definition
	Dymola compared to block diagrams
	Inverse models

	Templates and Reuse
	Interfaces and models
	Inheritance
	Model templates
	Reusable frameworks

	Model Design Tools
	Sweeping parameters
	Model calibration
	Design optimization
	Model management

	Code and Model Export
	Real-time simulation
	Binary model export
	Source code generation
	Model encryption

	Interfacing Other Software
	Functional Mockup Interface
	Native Simulink support
	Python, Java and JavaScript

	Academic Packages
	Learn and innovate
	Teaching offer
	Student licenses

	User Roles
	Development engineer
	Project manager
	HIL test engineer
	IT manager
	VP R&D
	Professor

	Industry Solutions: Model Libraries
	Automotive
	Aerospace and defense
	Energy, process and utilities
	Industrial equipment

	Functional Mockup Interface
	FMI tools for Simulink – FMI Kit

	References

